手机浏览器扫描二维码访问
柯西的办公室,也是他工作的地方。
满屋子堆满了信件和纸张。
有论文,草稿,还有外面的人给自己的信件。
论文有自己的,有学生的,还有收集的同行的。
草稿有计算的,设计的,画图的,已经用完的和用到半中间的。
信件有同行的,有有梦想的人的新想法,还有民科的垃圾文。
柯西一开始还可以应付这些东西,但随着量的增加,只能是有哪个看哪个的了。
他苦恼于自己敢接如此庞大的活。以为可以发现人才,交流思想,但是自己根本没有那么多精力。
柯西开始研究关于复数坐标系中的微积分。
如果在复数里,那种微积分就需要借鉴一种多元的方程的微积分的思想。
严格的柯西必须要弄清楚其中微积分的条件。
在二维直角坐标系的直线中需要连续可导,但在三维以上的坐标系中的可微,就麻烦了,它起码是两个以上的方向了。
柯西找到了f(z)=u(x,y)+iv(x,y)这种类型的复变函数,经过多次的验证,自己证明了对u这个方程求x次导数等于对v求y次导数,同时对u求y次导数等于负的对v求x次导数时,这个方程可以微分。
这也叫柯西条件。
这个方程组最初出现在达朗贝尔的着作中。
后来欧拉将此方程组和解析函数联系起来。
然后柯西采用这些方程来构建他的函数理论。
后来黎曼也证明的这个情况。
黎曼关于此函数理论的论文于1851年问世。
而脑洞大的黎曼在想,万一有f(z)=u(x,y)+iv(x,y)+jw(x,y)这样的怪东西,会有什么样的对称现象?
是对u求x次导数,等于v求y次导数,不对,不对称这个。
重来一遍。
是对u和v求x次导数等于,对w求y的导数;对v和w求x次导数等于对u求y次导数;对u和w求x次导数等于v求y次导数?和对u和v求y次导数等于,等于负的对w求x的导数;对v和w求y次导数等于负的对u求x次导数;对u和w求x次导数,等于负的v求x次导数?可以出现这样的轮换对称,那实数,i和j之间到底是什么?
这个j是后来的汉密尔顿发现的四元数这样的东西吗?
这样的对称性的这种公式可以存在并且对称吗?
那对于f(w)=u(x,y,z)+iv(x,y,z)这样个公式呢?这是个什么鬼?
黎曼一个走神,又想到了其他问题,把这个忘了。
柯西脑子里仅仅有一堆高维空间可微的样子,心里害怕,便不敢去触碰了。
喜欢数学心请大家收藏:()数学心
攻略对象变成室友后,他不对劲 枭鸢 撩惹疯批顶E,笨蛋少爷他逃了 死神不来了 还是修仙吧 怪物崽崽和他的怪物监护人 末世后我成了疯批alpha们的安抚剂 杀了那个妖鬼 我真没想在过去的年代当学霸 第三十年明月夜 君为客 我在死亡副本当管理员 穿到虫族和军雌相亲 迷津蝴蝶 新搬来的邻居 夸夸我的神探祖父穿越爹 神魔剑玄录 上流假象 小仓鼠今天有猫了吗 兽世养山君[种田]
重生过去畅想未来梦幻现实,再塑传奇人生!如果您喜欢重来1976,别忘记分享给朋友...
...
在咖啡馆打个工能被人怨恨捅死的阮素,突然被系统告知她需要在各个位面完成任务才能消除身上的怨念值。为了消除身上怨念值,阮素不得不苦兮兮地过上打工人的生活。穿越各个小世界消除男主们快爆棚的黑化值,还要小心其他主角团的人盯上她。只是一穿进来,阮素就要暴走了。这些原主都是怎么回事,没事惹了男主就跑,让她一个人来当背锅侠!真是人在家中坐,锅从天上来!面对黑化的男主们,阮素只能硬着头皮消除黑化值。她本只是兢兢业业地在系统的安排下做任务,结果本该对女主死心塌地的男主们,个个都移情别恋了!阮素我只想快点搞完任务回家恰饭,大佬别那么认真啊!1v1如果您喜欢绿茶女配真不想抢男主,别忘记分享给朋友...
历史新纪元征文入围奖作品崇祯皇帝被忽悠上吊丢江山,但是,这本书,皇帝虽在深宫,却有一个和外面人聊天的群,这还能被忽悠么?哎呀不好,皇帝还是穿越的,这挂开太大了,地球都颤抖了!完了,大明一个不小心,日不落了!...
从火影开始,蓝金鑫用魔封波穿梭了一个又一个世界,留下了一个又一个的传说。只是万界的强者们不知道的是蓝金鑫穿梭一个又一个世界的目的只有一个,那就是找到回家的路!如果您喜欢从火影开始的魔封波,别忘记分享给朋友...
六划先生的其他作品超能神警执法大明超警康乾御警超级神警您要是觉得懦弱的勇士还不错,请点击顶部分享按钮分享到你的朋友圈来支持六划先生吧!推荐阅读魅王宠妻鬼医纨绔妃医统江山夜天子督军续南明邪帝狂妃废材逆天三小姐银狐带着手机当知府如果您喜欢懦弱的勇士,别忘记分享给朋友...