手机浏览器扫描二维码访问
柯西之旅,数学家中一说到柯西,就有一种枯燥的感觉铺面而来。
总以为柯西喜欢去规定一些东西,以严谨着称。
其实这对柯西很冤枉,因为柯西其实恰恰是一个喜欢有各种创造的人。
他可以在数学中很多不同的方面做出各种各样让人意想不到的事情,这样的数学家正是一个让人兴奋的数学家。
因为他有华丽的思维,这是最吸引人的一面。
柯西最近就开始考虑,如何对一些不正常的函数进行积分了。
一般的积分的函数,往往都是连续可导的情况,对于不连续的函数,理所应当被归类到不可以积分的那个范围。
而柯西认为,不连续一些函数也是可以求面积,甚至是体积的。
在写法上直接那样写就行,倒也顺当,但是会看起来不合法,但是真的不合法吗?
这个从直觉上可以感知出来。
比如想函数y=1x*x这样的函数,在x=0是发散的。
柯西使劲看着这个函数,心中中感觉,它下包围的面积大小是可以知道的,因为这是收敛的,不是发散的。
如果在数值上是收敛的,那不就可以去认为面积不是无穷大了吗?那不就是有特定面积的?
所以,要按照微积分的基本方法去求,是不是具备一定的合理性去直接求积分,那就需要在零点处看看能不能找到一种意义,规范好了,就直接去求积分。
求积分容易,关键是需要给他找到一个合理性,这个合理性是什么?
就是连续性大致存在,而在无穷大点处也有连续不断接近的性质。
只要这样,就可以求积分。
存在的合法性,就是可以不断的接近,这种不断的接近就是一种连续性,妙哉!
在求无穷大区间的积分的时候,只需要让其变成定积分的形式,先求出积分的式子,之后让取点积分区间那个值成为一种接近无限的值。
还可以在无穷大的点哪里,取左右分开求积分那种形式,在无穷大点处也带入定值,让最后的那个积分公式取无穷来计算即可。
这种值就是柯西主值。
柯西主值是在微积分中,实数线上的某类瑕积分,为纪念柯西而得此名。
瑕积分(improperintegral)是高等数学中微积分的一种,是被积函数带有瑕点的广义积分。
在物理学中有Kramers–Kronig定理,就是说响应和耗散分别是一个函数的实部和虚部,他们之间由一个柯西主值积分相联系。
实验上一般测量响应或者耗散的其中一个,然后按Kramers–Kronig定理积分取柯西主值就可以得到另一个。
这里的积分是不能收敛的,如果不取柯西主值,物理学家就无法进行下一步。
喜欢数学心请大家收藏:()数学心
夸夸我的神探祖父穿越爹 上流假象 兽世养山君[种田] 攻略对象变成室友后,他不对劲 君为客 第三十年明月夜 末世后我成了疯批alpha们的安抚剂 撩惹疯批顶E,笨蛋少爷他逃了 枭鸢 死神不来了 小仓鼠今天有猫了吗 神魔剑玄录 迷津蝴蝶 穿到虫族和军雌相亲 我真没想在过去的年代当学霸 还是修仙吧 怪物崽崽和他的怪物监护人 新搬来的邻居 我在死亡副本当管理员 杀了那个妖鬼
重生过去畅想未来梦幻现实,再塑传奇人生!如果您喜欢重来1976,别忘记分享给朋友...
...
在咖啡馆打个工能被人怨恨捅死的阮素,突然被系统告知她需要在各个位面完成任务才能消除身上的怨念值。为了消除身上怨念值,阮素不得不苦兮兮地过上打工人的生活。穿越各个小世界消除男主们快爆棚的黑化值,还要小心其他主角团的人盯上她。只是一穿进来,阮素就要暴走了。这些原主都是怎么回事,没事惹了男主就跑,让她一个人来当背锅侠!真是人在家中坐,锅从天上来!面对黑化的男主们,阮素只能硬着头皮消除黑化值。她本只是兢兢业业地在系统的安排下做任务,结果本该对女主死心塌地的男主们,个个都移情别恋了!阮素我只想快点搞完任务回家恰饭,大佬别那么认真啊!1v1如果您喜欢绿茶女配真不想抢男主,别忘记分享给朋友...
历史新纪元征文入围奖作品崇祯皇帝被忽悠上吊丢江山,但是,这本书,皇帝虽在深宫,却有一个和外面人聊天的群,这还能被忽悠么?哎呀不好,皇帝还是穿越的,这挂开太大了,地球都颤抖了!完了,大明一个不小心,日不落了!...
从火影开始,蓝金鑫用魔封波穿梭了一个又一个世界,留下了一个又一个的传说。只是万界的强者们不知道的是蓝金鑫穿梭一个又一个世界的目的只有一个,那就是找到回家的路!如果您喜欢从火影开始的魔封波,别忘记分享给朋友...
六划先生的其他作品超能神警执法大明超警康乾御警超级神警您要是觉得懦弱的勇士还不错,请点击顶部分享按钮分享到你的朋友圈来支持六划先生吧!推荐阅读魅王宠妻鬼医纨绔妃医统江山夜天子督军续南明邪帝狂妃废材逆天三小姐银狐带着手机当知府如果您喜欢懦弱的勇士,别忘记分享给朋友...