棉花文学网

手机浏览器扫描二维码访问

第三百三十一章 李代数群论(第1页)

索菲斯·李意识到矩阵计算的内在复杂性,这是因为行列式那种奇怪的计算性质导致的。还有,就是对矩阵这个含义的理解,本身也有很多层次的内在复杂性。

其中就有非对易性,这是最重要也难以避免的一个性质。

由于矩阵计算的特殊性,和矩阵本身含义的深邃性,他发现了一种关于矩阵计算的特殊代数。

只是,想着有些复杂,也许有用,还是更加深的用途。

所以对其解释,需要专门引入一个严谨的说法,肯定是有关矩阵一类的。

李与克莱因开始讨论关于矩阵计算的一些问题:“我想研究一种代数,就是那种不符合交换律的那种。”

克莱因说:“我知道,矩阵绝大部分都不符合。”

李说:“也不符合结合律。”

克莱因说:“这个有意思了,细细想想,其实矩阵不符合结合律。我们应该建立一种新型代数了,名字就叫非结合代数。”

李说:“非结合代数是很宽泛的,我知道的非结合的代数,是通过矩阵的性质得来的。但是,我总觉得,不仅仅限于矩阵是这样的,就是其他那些我还不知道的其他数学结构,也会有这个。”

克莱因在想:如果是超出矩阵的其他代数,也是可以表示非结合代数的,也不无可能。但是还有一种可能性,那就是任何代数都弄用矩阵来表示,就看会不会表示。

克莱因说:“到了现在,如果想要在数学上有突破。我们要在新的数学领域大展拳脚,只需要去规范一些极其简单的数学法则,如果规划好那些看似简单的法则后,我们就可以以此为基础去扩张自己的优美而繁华的版图了。”

李说:“我们的梦。只是这个非结合代数,给人一种在思考上很别扭的感觉。又需要依赖有些难度但很重要的群论的结构。”

克莱因说:“我们已经离不开群了,那些不爱学习群论的人,不要再碰数学。”

李说:“非结合代数是环论里的一个分支,虽与结合代数有关,但是去掉了乘法结合律。这个东西难免存在,毕竟数学是广泛到人类不会轻易政府的程度。发现了非交换的,那离非结合的还远吗?”

克莱因笑得肚子都疼了,对李说:“你要是用这种变态的思维研究数学,说不定整合上帝创造万物的脾气。就是想这个模型不好想。”

后来,索菲斯·李创立李群。

若尔当是研究矩阵的专家,对矩阵的研究也规范到丧心病狂的程度,当然与李代数的很多非结合代数思维不谋而合了。

若尔当说:“李代数,你规范好了吗?”

李说:“很多概念,有子代数、理想、正规群等等。”

若尔当突然说:“在你心中,有些看似等于0的东西,并不见得真的是0吧。”

李知道若尔当说的是那些基的矩阵表示,用行列式直接解,那就等于零。

李说:“或许这个代数的神秘之处恰恰在此,我的矩阵的斜对角化简完后,是都等于0的,按理说就是0了吧。但是这些东西相互做一些计算,那也能算出很多花样来,而且你也不能说那就不对吧。”

若尔当笑道:“矩阵里只要有一个东西不为零,那就不是严格的零,对不对吧,你就是这个意思吧。你心里早就这么想了吧。”

李说:“没错,我就是这个意思了,我摊牌了。”

若尔当说:“大胆,你这个神经病,那都是虚妄的,行列式算出来是0的,那就是0.你居然闲的无聊说它们不是0.还有拿它们计算。你对数学不负责任,你是在玩耍。”

李说:“你敢对上帝发誓吗?矩阵里只有一个地方不是0,你必须按0来算?”

若尔当笑道:“跟你开玩笑呢,我太支持你了,你的非结合代数当然以此为根基。我要给你点赞。”

最初是由19世纪挪威数学家,经过一个世纪,特别是19世纪末和20世纪的前叶,由于威廉·基灵、嘉当、外尔等人卓有成效的工作,李代数本身的理论才得到完善,并且有了很大的发展。

李代数是挪威数学家索菲斯·李在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。

在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。

可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。

李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。

法国数学家嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。

他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,嘉当还构造出这些例外代数。

嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。

到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。

李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。

喜欢数学心请大家收藏:()数学心

杀了那个妖鬼  末世后我成了疯批alpha们的安抚剂  枭鸢  攻略对象变成室友后,他不对劲  撩惹疯批顶E,笨蛋少爷他逃了  夸夸我的神探祖父穿越爹  第三十年明月夜  死神不来了  怪物崽崽和他的怪物监护人  君为客  还是修仙吧  我在死亡副本当管理员  迷津蝴蝶  穿到虫族和军雌相亲  兽世养山君[种田]  我真没想在过去的年代当学霸  神魔剑玄录  小仓鼠今天有猫了吗  新搬来的邻居  上流假象  

热门小说推荐
文娱帝国

文娱帝国

被公司冷藏两年,他再度回归时,曾经相恋的女孩成了如日中天的当红花旦昔日的同期练习生已经在娱乐圈站稳脚跟就连当初负责自己的经纪人,也成了媒体口中的造星奇迹洛阳是作家。洛远是导演。洛寻则是一名演员。带着似是而非的记忆,参演曾经的经典大作,挑选最倾心的角色,顺便打造出一个属于自己的文娱帝国。如果您喜欢文娱帝国,别忘记分享给朋友...

我和女同学的都市生活

我和女同学的都市生活

我从小受人欺负,直到那一天,我开始逆袭了这是本爽文,让你继续爽到爆!!!书荒的朋友,可以看看我的老书我和女同学的荒岛生涯链接地址httpwwwheiyancombook64418如果您喜欢我和女同学的都市生活,别忘记分享给朋友...

授徒万倍奖励:武道横推诡异

授徒万倍奖励:武道横推诡异

叶然穿越到一个妖魔横行,以修士为主导的世界,成为了一家小武馆的馆主。在这里,没有武道传承,武者也没有出头之日。不过从叶然到来之后,武道崛起,只要教授弟子变强,就能得到各种奖励。面对众多妖魔,叶然面带微笑。对不起,我只会物理超度。如果您喜欢授徒万倍奖励武道横推诡异,别忘记分享给朋友...

皇上隆恩浩荡

皇上隆恩浩荡

大计第一步,得找个金大腿,可没曾想抱错了,扎脸,可否重抱?为何她重新抱谁,谁就倒了八辈子血霉?好吧,她认,反正她有二宝。一,读心术,虽然,独独对卞惊寒失灵。二,缩骨术,虽然,让本是成人的她看起来像个小孩。在三王府众人的眼里,他们的王爷卞惊寒也有二宝。一,竖着走的聂弦音。二,横着走的聂弦音。有人问聂弦音,三王爷对你如此好,你要怎么报答他?聂弦音认真想了想我会把他当成我亲爹一样侍奉!直到那一日,有人当着他的面,跟她说,等她长大了娶她,她点头如捣蒜,卞惊寒便彻底撕破了脸,也撕了她的衣。她哭得惊天动地你禽兽,我还是个孩子。某男淡定穿衣,唇角一抹餍足微弧比本王小两岁,的确算个孩子。...

长风万里尽汉歌

长风万里尽汉歌

这本书还可以叫做历史大乱炖身负系统金手指,穿越水浒第一背信弃义之人陆谦。定活出一个不一样的人生,闯出一个不一样的江湖。更要力挽天倾,砸碎赵宋,镇压女真,复我华夏浩荡雄风。直叫那天威卷地过黄河,万里羌人尽汉歌。而当赤红色的血旗从东向西漫卷而过的时候,突如其来的变故让他猛地一震,原来这系统如果您喜欢长风万里尽汉歌,别忘记分享给朋友...

时仪

时仪

关于时仪时光长河亘古流淌,时仪之刻收录着人性的光辉,寂寞的人孤独地的踏上寻找爱的旅途。...

每日热搜小说推荐