手机浏览器扫描二维码访问
扎里斯基早年在基辅大学学习时,对代数和数论很感兴趣,在意大利深造期间,他深受三位意大利卡斯泰尔诺沃、恩里克斯、塞维里在古典代数几何领域的深刻影响。
意大利几何学者们的研究方法本质上很富有“综合性”,他们几乎只是根据几何直观和论据,因而他们的证明中往往缺少数学上的严密性。
扎里斯基的研究明显带有代数的倾向,他的博士论文就与纯代数数学有着密切联系,精确地说是与伽罗瓦理论密切联系。
当然也就激发了他在研究方程的时候,也会用到环论这样的思想。
取得博士学位後,他在罗马的研究工作仍然主要是与伽罗瓦理论有密切联系的代数几何问题。
一九三七年扎里斯基的研究发生了重要的变化,其特点是变得更代数化了。
他所使用的研究方法和他所研究的问题都更具有代数的味道〔这些问题当然仍带有代数几何的根源和背景〕。
扎里斯基对意大利几何学者的证明感到不满意,他确信几何学的全部结构可以用纯代数的方法加以重新建立。
在一九三五年左右,现代化数学已经兴盛起来,最典型的例子是诺德与范德瓦尔登有关论着的发表。
范德瓦尔登从这个观点出发把代数几何抽象化,但是只取得了一部分成就,而扎里斯基却获得了巨大成功。
扎里斯基开始研究如果方程在坐标系里有一种图形,能不能从方程中翻译出拓扑学的一些性质呢?
对于这个方程来说,也有一种拓扑学的那种洞。
而这个洞,必须是一种无穷大那样的奇点。
最简单的奇点是通常二重点,还有尖点,迷向点,ADE奇点(确切地说这是曲面奇点,但是它可以对应成曲线奇点)
他的博士论文主要是把所有形如f(x)-tg(x)=0的方程分类,这里面f和g是多项式,x可以解为线性参数t的根式表达式。扎里斯基说明这种方程可分为五类,它们是三角或椭圆方程。
ADE奇点就是代数曲面上的有理二重点,它可以通过奇点解消的方式爆发成为ADE曲线。
ADE奇点有五种类型:
A_n型:对应方程z^2=x^2+y^n
D_n型:对应方程z^2=y(x^2+y^)(n≥4)
E_6型:对应方程z^2=x^3+y^4
E_7型:对应方程z^2=x(x^2+y^3)
E_8型:对应方程z^2=x^3+y^5
任何ADE奇点都是超曲面奇点,也是循环商奇点。它们的有理典范除子是零,重数是2。
除此以外有无穷大点,不连续的拐折点。
为了严格下定义,扎里斯基认为方程等于0,x一阶导等于0,y一阶导为0,就可以称之为奇点了。
如果f(x,y)的泰勒展开中不包含一次项的话,否则就称该点是光滑点。
换句话说,我们幂级数展开f(x,y)=ax+by+cx^2+dxy+ey^2+高次项,如果a和b不全为零,那么该原点就称为C的光滑点,否则就称为奇点。
一个带有奇点的平面曲线C必定是某个射影空间中的光滑曲线C到射影平面的投影。找出这样的光滑曲线C的过程,称为C的奇点解消或者正规化。
曲线奇点有很一些有趣的不变量来刻画,比如它的重数(就是泰勒展开式中最低项的次数),局部分支数,几何亏格,Milnor数等等。
这些不变量之间有着一定的联系,对它们的研究属于奇点拓扑这一分支。
扎里斯基对莱夫谢茨说:“我听了你的代数几何的拓扑问题后,想到让方程的拓扑学体现出来,就可以从代数簇中直接进行。代数簇的思想,不就是所有的方程本来都是多项式,而多项式仅仅有加法和乘法。就相当于是代数簇在做很多加和乘的运算来组成各种曲线,那么就是环的作用而形成曲线。代数几何的问题也就是交换环的理想的问题。”
莱夫谢茨说:“那你要是研究方程的拓扑性质,就从环这个结构开始就行了。”
扎里斯基知道这些方程不需要在坐标系里定位,所以用了仿射空间,或者叫线性空间,只需要表示他们的形状就行。
仿射空间,又称线性流形,是数学中的几何结构。这种结构是一种特殊的线性空间,是欧式空间的仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。
然后扎里斯基的工作就是把这些方程变成拓扑结构了。
在一九二七至一九三七年间,扎里斯基给出了关于曲线C的经典的黎曼-罗赫定理的拓扑证明,在这个证明中他引进了曲线C的n重对称积C(n)来研究C上度数为n的除子的线性系统。
君为客 夸夸我的神探祖父穿越爹 神魔剑玄录 还是修仙吧 死神不来了 我在死亡副本当管理员 杀了那个妖鬼 上流假象 怪物崽崽和他的怪物监护人 枭鸢 新搬来的邻居 攻略对象变成室友后,他不对劲 第三十年明月夜 小仓鼠今天有猫了吗 末世后我成了疯批alpha们的安抚剂 穿到虫族和军雌相亲 兽世养山君[种田] 撩惹疯批顶E,笨蛋少爷他逃了 迷津蝴蝶 我真没想在过去的年代当学霸
她本是一名中学语文老师,过劳死穿越到了一个名不见经传的朝代,她家穷,兄弟姐妹多,而且个个懒散不想干活,全部事情都落在她一个人身上,不仅如此,还有员外老爷想要娶她去做妾,条件是一百块大洋。为了不被卖掉,她只能想办法养活自己,养活这个家。如果您喜欢我在古代做家教,别忘记分享给朋友...
民间故老相传,将不过李,王不过霸,但是在大唐最无敌的却是李元霸。那么,穿越成李元霸的遗腹子,将会是怎样一种精彩的人生?惹事,他从来不怕。拼爹,谁拼得过他?另有老书大唐风华路,也是大唐种田流,有书荒的建议去看看,均订过万,应该还能入您法眼。全订群722290630如果您喜欢大唐第一狠人,别忘记分享给朋友...
经历了一场愉快的交谈,远野幸子股价格上涨10,当前股价110远野幸子股已清仓,获得资金110000已购买剑术(大师)技能,花费资金100000穿越东京,开启恋爱股市游戏系统,多崎司却一直沉醉如琐屑的日常中。炒股是不可能炒股的一一我!只!会!满!仓!文艺版归途的黄色电车寂寂寥寥,深邃的风声刮过脸颊,多崎司兜上风帽,只身走进幽深的隧道。呐,司君。少女从车厢追出来,脸上绽放出温柔的笑容春天快到了,是那种会捎来幸福的春天哦。如果您喜欢我的恋爱指数要满仓,别忘记分享给朋友...
关于英雄联盟之无敌升级超级爽文,火热追读携带英雄联盟无敌系统穿越到强者横行的异界,从此装逼之路大开!啥是无敌系统?就是只有你想不到,没有它做不到!真的,真的不是一般的杀怪升级哦!继英雄联...
粑粑!刚穿越到平行世界,就看到有个精致可爱的小女孩喊自己爸爸,杨轶表示有些懵逼。好吧,曦曦是百分之百的亲女儿,而孩子她妈居然是高冷绝美的过气歌后。这乐子闹大咯!问题也接踵而至。怎么哄娃?前世是孤胆杀手的杨轶挠破了头。要不讲点故事?杨轶没有想到,他搬运过来的故事火遍全球!怎么样把被自己气走的孩子她妈追回来?有了经...