手机浏览器扫描二维码访问
此次返校,他拜访了导师萨克斯,还四处转了转。
就在散步中,他突然回忆起——当年自己徘徊于校园小径,苦苦思索的一个数学问题:
没错,就是那个对“并封闭集合猜想”的证明。
读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。
为此,他还去找过导师萨克斯。但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。据Gilmer回忆,当时导师差点把他赶出房间。
但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。
Gilmer的思路是找反例。
根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。
既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。
现在,我们用信息论视角看这一猜想:
正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。
然而如果基于“没有一个元素出现在超过1%集合”这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。
这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。
但这也就意味着在“并封闭”集族中,至少存在一个元素,会出现在超过1%的集合中。
2022年11月16日,Gilmer将这一思路写成论文,发表在了arXiv上。
当然,他这篇论文还不是“完全体”,也就是说并没有完全证明并封闭集合猜想——
毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。
但这个新思路已经足够让学界震动。
普林斯顿大学数学家RyanAlweiss评价“引入信息量”这一操作:非常聪明。
仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。
在后续研究中,对“并封闭集合猜想”的概率值证明,被推进到了38%。
令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。
对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。
不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。
喜欢数学心请大家收藏:()数学心
新搬来的邻居 还是修仙吧 第三十年明月夜 末世后我成了疯批alpha们的安抚剂 我在死亡副本当管理员 杀了那个妖鬼 攻略对象变成室友后,他不对劲 上流假象 怪物崽崽和他的怪物监护人 兽世养山君[种田] 枭鸢 死神不来了 撩惹疯批顶E,笨蛋少爷他逃了 我真没想在过去的年代当学霸 穿到虫族和军雌相亲 迷津蝴蝶 小仓鼠今天有猫了吗 神魔剑玄录 夸夸我的神探祖父穿越爹 君为客
她本是一名中学语文老师,过劳死穿越到了一个名不见经传的朝代,她家穷,兄弟姐妹多,而且个个懒散不想干活,全部事情都落在她一个人身上,不仅如此,还有员外老爷想要娶她去做妾,条件是一百块大洋。为了不被卖掉,她只能想办法养活自己,养活这个家。如果您喜欢我在古代做家教,别忘记分享给朋友...
民间故老相传,将不过李,王不过霸,但是在大唐最无敌的却是李元霸。那么,穿越成李元霸的遗腹子,将会是怎样一种精彩的人生?惹事,他从来不怕。拼爹,谁拼得过他?另有老书大唐风华路,也是大唐种田流,有书荒的建议去看看,均订过万,应该还能入您法眼。全订群722290630如果您喜欢大唐第一狠人,别忘记分享给朋友...
经历了一场愉快的交谈,远野幸子股价格上涨10,当前股价110远野幸子股已清仓,获得资金110000已购买剑术(大师)技能,花费资金100000穿越东京,开启恋爱股市游戏系统,多崎司却一直沉醉如琐屑的日常中。炒股是不可能炒股的一一我!只!会!满!仓!文艺版归途的黄色电车寂寂寥寥,深邃的风声刮过脸颊,多崎司兜上风帽,只身走进幽深的隧道。呐,司君。少女从车厢追出来,脸上绽放出温柔的笑容春天快到了,是那种会捎来幸福的春天哦。如果您喜欢我的恋爱指数要满仓,别忘记分享给朋友...
关于英雄联盟之无敌升级超级爽文,火热追读携带英雄联盟无敌系统穿越到强者横行的异界,从此装逼之路大开!啥是无敌系统?就是只有你想不到,没有它做不到!真的,真的不是一般的杀怪升级哦!继英雄联...
粑粑!刚穿越到平行世界,就看到有个精致可爱的小女孩喊自己爸爸,杨轶表示有些懵逼。好吧,曦曦是百分之百的亲女儿,而孩子她妈居然是高冷绝美的过气歌后。这乐子闹大咯!问题也接踵而至。怎么哄娃?前世是孤胆杀手的杨轶挠破了头。要不讲点故事?杨轶没有想到,他搬运过来的故事火遍全球!怎么样把被自己气走的孩子她妈追回来?有了经...